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A PARAMETRIC STUDY OF MASS-RATIO AND TRAJECTORY FACTORS 

I N  FAST MANNED MARS MISSIONS 

By Duane W .  Dugan 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

A parametric study i s  made of several  f ac to r s  which a f f ec t  t h e  magnitude 
of  the  gross-payload f r ac t ions  f o r  manned Mars missions of t o t a l  duration l e s s  
than one synodic period of M a r s .  Velocity requirements are found and used t o  
determine the  bes t  possible r a t i o s  of gross payload t o  i n i t i a l  m a s s  i n  a near- 
Earth o r b i t .  Several mission parameters are varied to assess t h e i r  e f f ec t s  
upon the gross -payload r a t i o s .  Included among the  parameters studied a re  : 
date o f  opposition of Mars included within the  mission period; type of mission 
mode; propulsion charac te r i s t ics ;  date of arrival a t  Mars; length of  s t ay  time 
a t  Mars; delayed and premature departures from Mars and from cor rec t ly  o r i -  
ented o r b i t s  about Earth; t o t a l  t r a n s i t  time; and the  f r ac t ion  of  gross pay- 
load unloaded a t  various phases of the  mission. Associated t r a j e c t o r i e s  are  
examined f o r  ve loc i t ies  of  en t ry  in to  the  m a r t i a n  and t e r r e s t r i a l  atmospheres, 
t he  per ihel ion distances of re turn  t r a j ec to r i e s ,  and the  communication d i s -  
tances between Earth and the  mission spacecraft .  

INTRODUCTION 

After the  lunar mission, a manned expedition t o  t he  planet  Mars appears 
t o  be a reasonable step, from the  s c i e n t i f i c  and technical  standpoints, i n  t he  
manned exploration of the so la r  system. Pa r t i cu la r  s c i e n t i f i c  motivation i s  
furnished by the  p o s s i b i l i t y  t h a t  some f o r m  of e x t r a t e r r e s t r i a l  l i f e  may be 
found and studied. I n  addition, t h e  environmental conditions, such as temper- 
a ture  and atmospheric pressure, a re  believed t o  be l e s s  hos t i l e  t o  man on Mars 
than on Venus and Mercury. 

Although a manned mission t o  M a r s  may not be undertaken f o r  some time, 
preliminary invest igat ions of t he  many f ac to r s  involved i n  such missions are  
desirable  now t o  assist i n  defining a t  an ear ly  date the  major research 
problems whose solutions are  e s s e n t i a l  t o  t h e  success of t he  mission. 

A number of preliminary s tudies  r e l a t ing  t o  round-trip missions t o  Mars 
have been reported.  Some are concerned ch ief ly  with fly-by missions and with 
Mars orb i t ing  missions without landing (e .g . ,  r e f s .  1 and 2 ) ;  others,  such as 
reference 3, t r e a t  t he  manned landing-and-return mission, bu t  t he  scope i s  
r e s t r i c t e d  t o  spec i f ic  payloads and t o  r e l a t ive ly  few mission modes. It 



appears t h a t  a parametric but  simplified study of a wide range of  mission 
modes and opportunities would be useful .  Such a study i s  the  subject of t h i s  
paper. 

The f i rs t  p a r t  of the  study i s  concerned with obtaining ve loc i ty  require-  
ments f o r  b a l l i s t i c  f l i g h t s  as a function of t r a n s i t  times from Earth t o  Mars 
and from Mars t o  Earth f o r  an appropriate range of launch dates over a com- 
p l e t e  cycle of oppositions of Mars i n  the  period from 1 9 1 t o  1988. I n  the  
second par t ,  these veloci ty  requirements are used f o r  obtaining maximum r a t i o s  
of  gross payload t o  i n i t i a l  mass i n  Earth o r b i t  as functions of t o t a l  t r a n s i t  
time, s tay  t i m e  a t  Mars, unloaded f r ac t ions  of gross payload, and of the  year 
of opposition. The corresponding ve loc i t ies  of en t ry - in to  the  m a r t i a n  and 
t e r r e s t r i a l  atmospheres and t r a j ec to ry  cha rac t e r i s t i c s  of outbound and re turn  
legs  as well  as the  e f f ec t s  of ea r ly  and la te  departures f rom both Earth and 
Mars are  investigated.  The study includes a comparison of maximum gross- 
payload f r ac t ions  and of  other mission cha rac t e r i s t i c s  which r e s u l t  f rom 
employing several  d i f fe ren t  mission modes of the  d i r ec t  and of the Mars-orbit 
rendezvous types.  Two types of propulsion systems are considered, one 
chemical with a spec i f ic  impulse, Isp, of  445 seconds, t h e  other nuclear 
with an ISp of 820 seconds. 

I n  general, only those missions l a s t ing  l e s s  than the  synodic period of  
Mars (780 days) a re  considered here. 
calculated f o r  missions based on Hohmann-type t r a j e c t o r i e s  l a s t ing  from 900 t o  
1000 days f o r  comparison with those of these "fast" missions. 

I n  some instances cha rac t e r i s t i c s  are  

ANALYSIS 

Some general aspects of manned landing and re turn  missions t o  Mars may be 
inferred from a study of f igure  1. In  t h i s  f igure  the  o r b i t s  of Earth and 
Mars are projected onto the  plane of the e c l i p t i c ,  together with dates and 
r e l a t ive  posi t ions of these two planets  f o r  oppositions of Mars between the  
years 1971 and 2000. Also shown a re  the locations of  the  ascending and 
descending nodes of Mars' o r b i t ,  which i s  incl ined 1 . 8 5 O  t o  the e c l i p t i c  plane. 
Although the  synodic period of Mars i s  nearly 780 days or 26 months, the 
ac tua l  i n t e rva l  between successive oppositions included i n  f igure  1 may be as 
m c h  as four weeks longer o r  a l i t t l e  over two weeks shorter  than 26 months. 
This i r r egu la r i ty  i s  due, f o r  the most par t ,  t o  the eccen t r i c i t i e s  of  the 
o r b i t s  of Earth (0.016726) and especial ly  of Mars (0.093367). A l s o  because of 
these o r b i t a l  eccen t r i c i t i e s ,  t he  distances of nearest  approach of t he  planets  
vary from 3 5 ~ 1 0 ~  t o  nearly 63x10~ miles. 

Figure 1 suggests trends i n  the  r e l a t i v e  energy requirements f o r  round- 
t r i p  missions t o  Mars which have a t o t a l  duration, including s tay  time a t  
Mars, of l e s s  than the  synodic period of  Mars. On the  bas i s  of the  noted 
variable distance between the  two planetary orb i t s ,  such requirements should 
be lower f o r  oppositions which occur when M a r s  i s  i n  the  neighborhood of i t s  
per ihel ion than f o r  oppositions which coincide more near ly  with Mars' aphelion 
passage. Likewise, it can be ant ic ipated t h a t  reentry ve loc i t ies  i n to  the  

2 



Ear th ' s  atmosphere will tend t o  be lower if the mission departs Mars when Mars 
i s  i n  the neighborhood of i t s  perihelion ra ther  than close t o  aphelion. The 
oppositions i n  f igure  1 which appear t o  present the  most favorable opportuni- 
t i e s  f o r  round-trip missions are those of 1-91, 1986, and 1988. 

From such considerations it appears advisable t o  examine the e f f ec t  of 
planetary configurations upon mission charac te r i s t ics .  Accordingly, t he  pres -  
ent  study includes a nuniber of mission dates i n  the  cycle of oppositions 
encompassing the  years 191 through 1988. 

To evaluate the  var ia t ions  of velocity requirements with outbound and 
inbound t r i p  t i m e s  and with launch dates over a complete cycle of oppositions, 
several  simplifications and approximations are incorporated in to  the  calcula- 
t i ons .  Appendix A out l ines  the  procedures used. Velocity increments are 
computed by a var iant  of the  familiar "patched-conic" procedure. To a id  i n  
interpret ing the  r e s u l t s  presented i n  the  next section, the  simplifications 
and assumptions used i n  t h i s  pa r t  of the  analysis  a re  summarized here as 
f o l l o w s  : 

(1) Posi t ions of Earth and Mars are  calculated f r o m  equations based on 
the  assumption t h a t  the  o r b i t s  are  unperturbed e l l i p ses  about the Sun. 

(2) The o rb i t  of Mars i s  assumed t o  l i e  i n  the  e c l i p t i c  plane.  This 
assumption i s  made i n  order t o  avoid the  highly incl ined single-impulse he l io-  
cent r ic  t ransfer  t r a j e c t o r i e s  required when the  departure and t a rge t  planets  
do not l i e  i n  the  same plane a t  the  time of arrival. Unless they are  i n  the  
same plane, the  inc l ina t ion  of t he  hel iocentr ic  t r ans fe r  t r a j ec to ry  with 
respect t o  t he  e c l i p t i c  approaches 90 
gitudes of the  departure and t a rge t  planets  approaches 180 . I n  such cases, 
the  required launch ve loc i t ies  and r a t e s  of closure a t  a r r i v a l  become unrea- 
sonably la rge .  
small increases i n  mission veloci ty  requirements beyond those calculated f o r  
coplanar planetary o r b i t s .  A simple approach t o  t h i s  i s  discussed i n  appen- 
dix A and r e s u l t s  of calculations made according t o  t h i s  method are  shown i n  
f igure  2 f o r  a typ ica l  example of  an Earth-to-Mars t r i p .  According t o  the  
f igure,  a second impulse during midcourse i s  advantageous only f o r  angular 
distances typ ica l ly  between 170' and 190'. 
indicates  t ha t  differences between velocity requirements f o r  single-impulse 
type t r a j ec to r i e s  calculated f r o m  t w o -  and three-dimensional equations are 
ins igni f icant  except when angular distances a re  greater  or l e s s  than 180 
by about 20°. of angular t rave l ,  bu t  
f o r  "fast" round-trip missions the  angular distances involved are  l ike ly ,  i n  
general, t o  be somewhat d i f fe ren t  from 180'. 
assumption t h a t  the o r b i t  of Mars i s  coplanar with t h a t  of Earth should give 
r e s u l t s  adequate f o r  the  present exploratory purposes. The out-of -plane 
requirements are  checked i n  t h i s  study t o  evaluate the  v a l i d i t y  of t h i s  
assumption. 

0 as the  difference i n  the c e l e s t i a l  lon- 
0 

Undesirably large incl inat ions can be avoided with r e l a t ive ly  

Likewise, t he  typ ica l  example 

0 
p 

Hohmann-type t r a j e c t o r i e s  involve 180 

Hence, f o r  the  most par t ,  the  

(3) Equations of Newtonian c e l e s t i a l  mechanics f o r  the  r e s t r i c t e d  two- 
body problem are  used t o  calculate  ve loc i t ies  and other per t inent  data  i n  
planetocentric and hel iocentr ic  conic o r b i t s  of the  mission spacecraft .  
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These o r b i t s  a r e  patched t o  give an approximation t o  the  ac tua l  t r a j ec to ry  
which would be followed by the  spacecraft  under the  s t ipu la ted  conditions. I n  
reference 4 it i s  s t a t ed  t h a t  ve loc i ty  increments obtained i n  a three- 
dimensional sphere-of-influence patched-conic procedure agreed within 3 per- 
cent with those obtained with "exact" n-body calculat ions.  

(4) Heliocentric ve loc i t ies  a t  points  of t r ans i t i on  from hyperbolic 
planetocentric o r b i t s  t o  the  hel iocentr ic  transfer o r b i t  o r  vice versa a re  
calculated as though they w e r e  o r b i t a l  ve loc i t i e s  a t  t he  appropriate posi t ions 
of the  departure and t a rge t  planets .  

(5)  
t a rge t  planets  a t  per t inent  points  of t r a n s i t i o n  from planetocentric hyper- 
bo l i c  o r b i t s  t o  he l iocent r ic  t ransfer  o r b i t s  or vice versa a re  assumed equal 
t o  the  appropriate hyperbolic excess ve loc i t i e s .  

Relative ve loc i t i e s  between mission spacecraft  and departure or 

(6) Gravity losses  involved i n  departing f r o m  or arr iving at planeto- 
cent r ic  parking o r b i t s  are neglected, and the  a l t i t u d e s  of these o r b i t s  are 
assumed t o  be zero. The r e l a t i v e l y  small e r ro r s  introduced by each of these 
s implif icat ions tend t o  compensate one another i n  the  present study except f o r  
r e l a t i v e l y  high-energy t r i p s  from Mars t o  Earth. 

( 7 )  Veloci t ies  of  en t ry  in to  planetary atmospheres are calculated a t  the  
surface of the planet  ra ther  than a t  an appropriate a l t i t u d e  above the  surface. 

Calculations by means of  a more de ta i led  procedure (e .g . ,  using sphere of 
influence t o  compute ve loc i t ies  i n  hel iocentr ic  t r ans fe r  o r b i t s  and i n  plane- 
tocent r ic  hyperbolic o rb i t s )  indicate  t h a t  e r ro r s  introduced by assumptions 
and s implif icat ions (3)  t o  (7)  do not exceed more than a few percent.  

Following the  descr ipt ion i n  appendix A of  the  procedures f o r  generating 
incremental veloci ty  requirements i s  a second sect ion describing how these 
veloci ty  increments used i n  conjunction with other  mission parameters give 
r a t i o s  of the  gross payload t o  the  i n i t i a l  mass i n  Earth o r b i t .  The equation 
developed there  f o r  the  r a t i o  of gross payload t o  i n i t i a l  mass i n  Earth o rb i t ,  
EL, i s  

1R2R3R4 EL = 
1 - k l ( l  - R2R3R4) - k2(1 - R3R4) - k3( l  - R4)  

r a t i o  of mass of i n e r t s  t o  m a s s  of propel lants  i n  i t h  stage 'i 

f r ac t ion  of gross payload unloaded a t  various points  i n  the  mission; 
j = 1, 2, 3 

kj  

A high-speed d i g i t a l  computer w a s  used t o  perform the  many calculations 
involved i n  each of t h e  foregoing procedures. 



RESULTS AND DISCUSSION 

Some of t h e  r e s u l t s  obtained from the  programs previously described a re  
presented and discussed i n  t h e  following sections.  

Velocity Requirements 

Although the  ve loc i t i e s  associated with t r i p s  t o  Mars and back are 
regarded here ch ief ly  as inputs t o  a program f o r  calculat ing mass r a t i o s ,  
they can provide a bas i s  f o r  understanding and an t ic ipa t ing  the  e f f ec t s  on 
mass r a t i o s  of the  year of opposition, date of a r r i v a l  a t  Mars, t o t a l  transit 
t i m e s ,  s tay  t i m e s  a t  Mars, mission modes, and other  parameters. I n  general, 
t he  conditions f o r  which the  sums of the  major ve loc i ty  requirements a re  l e a s t  
w i l l  serve as guides i n  finding those conditions f o r  which the  gross-payload 
f r ac t ions  are l a rges t .  Accordingly, a b r i e f  survey of f ac to r s  a f fec t ing  major 
veloci ty  requirements i s  made here. 

Examples of t he  e f f ec t s  of transit time and a r r i v a l  date upon major 
veloci ty  requirements and atmosphere-entry ve loc i t i e s  a re  presented i n  f i g -  
ure  3. The various ve loc i t i e s  required f o r  several  t r a n s i t  t i m e s  a re  p lo t t ed  
against  the  date  of a r r i v a l  a t  Mars. The date of departure from Mars i s  t h e  
a r r i v a l  date plus  the  s tay  t i m e  Ts. ( I n  f i g .  3, AT3 and A ~ E  are shown f o r  
a 7-day s tay a t  Mars.) Veloci t ies  of entry in to  t h e  martian atmosphere may 
be obtained from the  values of 
constant, namely, t h e  c i r cu la r  veloci ty  of a Mars-centered o r b i t  (0.3183 i n  
t e r m s  of Earth escape speed, or 11,670 f p s ) .  

AV2 from which they d i f f e r  by an addi t ive 

A charac te r i s t ic  t rend i s  noted i n  f igure  2, namely, t h a t  veloci ty  incre-  
ments associated with the  Earth-to-Mars t r i p ,  AV, and A72, reach t h e i r  mini- 
mums f o r  a r r i v a l  dates  a f t e r  opposition, whereas re turn  ve loc i t ies  
v s  
be seen that  increasing the time on e i the r  leg beyond about 250 days w i l l  
cause l i t t l e  reduction of minimum major veloci ty  requirements. 

AT3 and 
It can a l so  are  lowest i f  departure from Mars occurs before opposition. 

If the  t o t a l  t r a n s i t  time T and the  s tay  t i m e  TS are specified,  t h e  
t o t a l  veloci ty  increments required i n  a given mission mode w i l l  have a s ingle  
minimum f o r  any given arrival date. This m i n i m  value i s  generally insensi-  
t i v e  within +4 or 5 days t o  t he  transit time out  
re turn  leg,  T2). 
veloci ty  requirements noted i n  f igure  3, however, a p lo t  of  t he  foregoing 
minimum values as a function of a r r i v a l  date exhib i t s  a number of s ta t ionary  
values. Figure 4(a). i l l u s t r a t e s  the phenomena f o r  t he  rendezvous mode which 
u t i l i z e s  propulsion braking t o  acquire an o r b i t  about Mars and atmospheric 
braking a t  Earth. I n  t h e  example, the  smallest m i n i m  occurs f o r  a r r i v a l s  
before opposition i n  the  case of t o t a l  transit times of 300 and 340 days, bu t  
after opposition f o r  longer t o t a l  t r i p  t i m e s .  A t  some value of T, t he  two 
m i n i m s ,  one before, t he  other a f t e r  opposition, should be equal. I n  cases 
f o r  which t o t a l  ve loc i ty  requirements are near ly  equally low f o r  arrivals 

T 1  (or t o  t r i p  time on 
Because of t he  opposite t rends of outbound and inbound 
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e i t h e r  before o r  after opposition, other considerations may a f f ec t  t he  
select ion of the  a r r i v a l  date.  
date, namely t h a t  outbound t r i p  times are r e l a t i v e l y  longer f o r  ea r ly  a r r i v a l s  
than f o r  those after opposition. The longer outbound t r i p s  could be advanta- 
geous i f  w a s t e  products a re  t o  be je t t i soned  along t h e  way. Figure 3(d) shows 
t h a t  ve loc i t i e s  of en t ry  i n t o  t he  terrestr ia l  atmosphere i n  the  neighborhood 
of opposition a r r i v a l  dates a re  markedly lower f o r  ea r ly  than f o r  la te  arriv- 
a l s  a t  Mars. 
choice of  an ea r ly  a r r i v a l  i s  generally advantageous only f o r  missions o f  
r e l a t ive ly  high energy; f o r  example, the  penalty f o r  select ing the  bes t  ea r ly  
a r r i v a l  date ra ther  than the  bes t  l a t e  a r r i v a l  date  f o r  the  460-day mission 
shown i n  the  f igu re  i s  an increase in t o t a l  veloci ty  requirements of near ly  
13,000 fps. If propulsion braking i s  specif ied t o  l i m i t  atmosphere-entry 
ve loc i t ies  at Earth, it i s  possible tha t  the  e a r l i e r  a r r iva l s  w i l l  be advmta-  
geous a l s o  f o r  t h e  lower energy missions. 

Figure 4(b) shows mothe r  e f f ec t  of a r r i v a l  

Unfortunately, as i n  the  example shown i n  f igure  4(a),  the  

The e f f e c t  of t o t a l  t r a n s i t  time upon minimum to ta l -ve loc i ty  requirements 
i s  shown in  f igu re  5 f o r  one type of  rendezvous mode (propulsion braking at 
Mars) and f o r  the  d i r ec t  mode i n  f igure  5 .  The s tay  time a t  Mars i s  7 days 
i n  the  examples. For comparison, the t o t a l  major veloci ty  rcquirements f o r  
missions employing Hohmann-type t r a j e c t o r i e s  i n  both legs i n  the  d i r ec t  mode 
are l i s t e d  f o r  t w o  periods.  The use of these Hohmann-type t r a j e c t o r i e s  
requires  very long s t ay  times, and the advantages i n  reduced veloci ty  require-  
ments are  not necessar i ly  la rge .  For example, i n  1 9 7 1 t h e  sum of the  major 
veloci ty  increments i n  the  d i r ec t  mode f o r  a t r a n s i t  time of  410 days and a 
s tay  time of 7 days i s  only about 1.5 percent greater  than tha t  required i n  the  
Hohmann-type mission which requires 502 days of t r a v e l  time and a s tay  period 
of  4-51. days. If out-of-the-plane veloci ty  requirements are  included, the  1.5- 
percent advantage c i t e d  f o r  the Hohmann-type mission reduces t o  a l i t t l e  over 
4 percent. 
amount t o  l e s s  than 200 fps,  whereas they are nearly 3900 fps  i n  the  two 
Hohmann-type t r a j e c t o r i e s . )  
t r a j ec to r i e s  i s  t h a t  atmosphere-entry ve loc i t ies  a t  Earth are  typ ica l ly  about 
37,000 t o  38,000 fps  whereas they are considerably greater ,  about 63,000 fps ,  
i n  the  short  mission used f o r  comparison. 

( I n  t h e  example "fast" mission, t o t a l  plane-change ve loc i t ies  

A more d i s t i n c t  advantage of  t he  Hohmann-type 

The e f f ec t  of the  date of a r r i v a l  a t  M a r s  on the  m i n i m  t o t a l  ve loc i ty  
requirements f o r  several  t o t a l  t r a n s i t  t i m e s  and over a complete cycle of  
oppositions between the  years lfll and 1988 i s  shown i n  f igu re  6. The var ia -  
t ion  over t h e  cycle i s  qui te  pronounced f o r  r e l a t i v e l y  short  t r i p s  i n  which 
energy requirements are  high, but  diminishes f o r  longer t r i p s  of lower energy. 
For the  t w o  mission modes shown, veloci ty  requirements are  generally l a rges t  
during the  opposition of  1978, a l t h o u g h , b  m o s t  cases, only s l i gh t ly  grea te r  
than those f o r  t h e  immediately preceding and following oppositions of 1-975 
and 1980. 
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Gross -Payload Fractions 

Among the considerable number of fac tors  which a f f ec t  t he  magnitude of 

(a) choice of mission 
the  gross-payload f r ac t ions  associated with " fas t"  manned landing-and-return 
missions t o  Mars, t he  following a re  considered here: 
mode; (b)  t o t a l  t r a n s i t  t i m e ;  ( c )  charac te r i s t ics  of propulsion used; (d) date 
of  opposition of Mars; ( e )  unloading of portions of  gross payload during m i s -  
sion; and ( f )  length of s tay  t i m e  a t  Mars. 

Unless spec i f i ca l ly  noted otherwise, atmospheric braking i s  assumed t o  be 
used f o r  d i r ec t  descent t o  the  surface of Earth upon re turn .  

It should a l so  be noted t h a t  a l l  r e s u l t s  presented here are  based upon 
the  assumption t h a t  the o r b i t  of Mars l ies  i n  the  plane of t he  e c l i p t i c .  A s  
discussed i n  an e a r l i e r  section, veloci ty  increments required t o  change the  
inc l ina t ion  of t he  he l iocent r ic  transfer o r b i t  e i t h e r  a t  launch o r  during 
midcourse i n  order t o  take in to  account the ac tua l  inc l ina t ion  of Mars' o r b i t  
need not be large.  These ve loc i ty  increments are calculated here i n  the  m a n -  
ner previously described. Some of t he  l a rges t  of these increments encountered 
i n  the present study are shown i n  f igure  7 as a function of  t o t a l  t r a n s i t  
time. A l s o  shown i s  the  var ia t ion  of gross-payload f r ac t ion  with t o t a l  
t r a n s i t  time. Figure 7 indicates  t ha t  t o t a l  out -of -plane veloci ty  changes 
need not exceed a few hundred f e e t  per second. The f igu re  a l so  shows tha t  
t yp ica l ly  f o r  "fast" missions, plane-change ve loc i t ies  i n  the  re turn  t r i p  are 
r e l a t ive ly  ins igni f icant .  Since the t o t a l  of the ma jo r  veloci ty  increments i n  
the  example mission amounts t o  more than 42,000 fps ,  these addi t ional  veloci ty  
requirements should not mater ia l ly  a f f ec t  conclusions based upon t h e i r  neglect. 

Effect  of  mission mode.- I n  f igure  8 i s  shown a comparison of gross- 
payload f r ac t ions  possible  i n  t w o  types of  rendezvous modes and i n  the  d i r ec t  
mode f o r  missions arr iving a t  Mars i n  1.31. Chemical propulsion with a spe- 
c i f i c  impulse of 445 seconds and a constant i n e r t  f r ac t ion  
pe l lan t  mass) of 0.10 i s  assumed f o r  a l l  stages. '  A f r ac t ion  k2 of t he  
gross payload i s  considered t o  be unloaded e i the r  i n  a parking o r b i t  about 
Mars (excursion vehicle, e t c . )  o r  a t  the surface (heat-shield s t ruc ture ,  land- 
ing gear, e t c . ) .  A s tay  time of 7 days i s  assumed f o r  the  comparison. For 
comparatively short  t r a v e l  times, gross-payload f rac t ions  a re  seen t o  be 
la rger  f o r  t he  d i r ec t  than f o r  t h e  propulsive-type rendezvous mode. If t r a v e l  
time i s  greater ,  however, l a rger  f rac t ions  can be achieved i n  t h i s  type of 
rendezvous method than i n  t h e  d i r ec t  method f o r  s i m i l a r  unloaded f r ac t ions  
k2. The value of k2 w i l l  vary somewhat with the mission mode; i n  the  rendez- 
vous mode, t he  excursion vehicle probably represents a s l i g h t l y  l a rge r  f r a c -  
t i o n  of t he  gross payload than do t he  heat shield,  landing gear, deceleration 
devices, etc., required f o r  t he  d i r ec t  descent of t he  e n t i r e  spacecraft  t o  t h e  
surface.  Figure 8 shows t h a t  if atmosphere braking i s  used t o  acquire t h e  
parking o r b i t  about Mars i n  a rendezvous-type mission, considerably l a rge r  
gross-payload f r ac t ions  can be obtained. It can a l s o  be seen t h a t  t he  bes t  

i s  considered t o  be a function of ve loc i ty  increment, calcula-  
t i ons  show t h a t  it may be about 0.12 t o  0.13 a t  the  lowest major increments 
encountered. The e f f e c t  on maximum BL i s  negl igible .  

cr (based upon pro- 

- - . _ _  - 
'If CT 
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t r a v e l  time i s  about two months shorter  i n  t h i s  mode than i n  the  other  type of  
rendezvous mode. The advantages shown f o r  atmospheric braking a t  Mars rela- 
t i v e  t o  propulsive braking w i l l  be p a r t l y  o f f s e t  by requirements of  g rea te r  
m a s s  of heat sh ie ld  f o r  the  e n t i r e  vehicle, of grea te r  s t ruc tu ra l  s t rength f o r  
t he  parent spacecraft ,  and of addi t ional  propulsion f o r  correcting the  i n i t i a l  
orb it. 

Propulsion cha rac t e r i s t i c s . -  A comparison between gross-payload f r ac t ions  
possible with chemical propulsion, specif ic  impulse of 445 sees, and with 
nuclear propulsion, spec i f ic  impulse of 820 sees, i s  given i n  f igure  9 .  AS 
discussed i n  appendix A, the  i n e r t  f rac t ion ,  6, f o r  nuclear propulsion i s  
considered t o  be a function of the  veloci ty  increment-.2 
comparison includes the  opposition of 1975. Results f o r  the  rendezvous mode 
with propulsion braking a t  Mars are presented i n  f igu re  9(a) .  
nuclear propulsion i s  the  rendezvous mode which employs atmospheric braking t o  
a t t a i n  an o r b i t  about Mars. 
d i r ec t  mission mode. Because the veloci ty  requirements a t  departure f rom Mars 
are considerably grea te r  i n  the  d i r ec t  than i n  the  rendezvous mode, two stages 
of propulsion a re  used f o r  t he  re turn  t r i p  i n  the  case of  chemical propulsion 
i n  order t o  avoid negative values of payloads i n  many instances.  I n  general, 
f igure  9 indicates  t h a t  i n  1975 maximum gross-payload f r ac t ions  with nuclear 
propulsion are  about th ree  times la rger  than those with chemical propulsion. 
It might be noted t h a t  t h e  r e l a t i v e  e f f ic ienc ies  of mission modes shown f o r  
nuclear propulsion i n  1 .35 are  similar t o  those previously noted f o r  chemical 
propulsion i n  1971. 

The period chosen f o r  

Al so  shown f o r  

I n  f igure 9(b) ,  the  comparison i s  made f o r  t he  

Date of opposit ion.-  Figure 10 presents the  var ia t ions of gross-payload 
ra t ios  with t o t a l  transit time f o r  the three types of mission modes discussed 
previously, but  f o r  t he  period including the  opposition of  1980. 
of t he  date of opposition upon the  m a x i m  payload ra t ios  possible under s i m i -  
l a r  conditions of propulsion and unloading f r ac t ion  can be seen from comparing 
the r e s u l t s  shown i n  f igures  8, 9, and 10. The r e l a t i v e  magnitudes a re  gener- 
a l l y  i n  accord with the  var ia t ion of minimum t o t a l  veloci ty  requirements over 
a cycle of oppositions presented i n  f igure  6. The payload f rac t ions  f o r  m i s -  
s ions i n  1980 are e s sen t i a l ly  the  same o r  only s l i g h t l y  la rger  than those i n  
1975, depending upon the  mission mode. 

The e f f ec t  

Unloading.- The dependence of the gross-payload f rac t ion  upon the  magni- 
tude of the  unloaded f rac t ion  of the gross payload i s  c l ea r ly  indicated i n  
f igure  8. 
mize the  gross-payload f r ac t ion  i s  e s sen t i a l ly  independent of  t he  unloaded 
f r ac t ion .  
mum mission t r a j ec to r i e s ,  namely, date of a r r i v a l  and individual t r i p  times, 
amount t o  only a few days f o r  the  ranges of the  unloaded f rac t ions  considered 
t o  be of p r a c t i c a l  significance.  
and en t ry  ve loc i t i e s  a re  a l so  e s sen t i a l ly  independent of  the  

The f igu re  a l s o  shows t h a t  the  t o t a l  transit time-required t o  m a x i -  

The e f f ec t s  of unloaded f rac t ions  on other  charac te r i s t ics  of op t i -  

A s  a r e su l t ,  t h e  various veloci ty  increments 
k i .  

‘Values of 6 f o r  nuclear propulsion assumed here range from about 0.17 
f o r  a AV of 33,000 fps  t o  0.25 f o r  a AV of 8,000 fps .  
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I n  the  missions considered so far, the  unloading w a s  assumed t o  take 
place a f t e r  the  vehicle had a t ta ined  a parking o rb i t  about Mars or descended 
d i r e c t l y  t o  the surface.  I n  the  rendezvous mode employing propulsion t o  
achieve capture about Mars, it i s  per t inent  t o  examine the  e f f ec t s  of separat-  
ing the  excursion vehicle from the  parent c r a f t  p r i o r  t o  the  application of 
thrust. The smaller vehicle would then descend d i r ec t ly  t o  t h e  surface of  
Mars, using atmospheric braking f o r  the most p a r t .  
gross-payload f rac t ions  obtained by unloading the excursion vehicle before or 
a f t e r  a parking o r b i t  i s  a t ta ined  by the  parent spacecraft  i s  given i n  f i g -  
ure 11. The advantages of t h e  ear ly  over the  later separation of the  excur- 
sion vehicle are  s m a l l  or modest, depending upon the  value of 
involved. 
c l e  (ch ief ly  of  the heat sh ie ld  and of guidance f a c i l i t i e s )  would be required 
i n  the  case of ear ly  separation. 
of t r a n s i t  times f o r  which payload f rac t ions  a re  grea tes t ,  the  atmosphere- 
entry ve loc i t i e s  may be 8000 t o  9000 fps  higher i n  d i r ec t  descent than i n  a 
descent f r o m  o r b i t .  
i n  o rb i t  i n  the  mission mode considered i s  not l i ke ly  t o  be large,  
percentagewise. 

A comparison between the  

kl (or k2) 
On the  other  hand, some increase i n  the  mass of the excursion vehi- 

Figure 12 indicates  t h a t  i n  the  neighborhood 

The net  advantage of ear ly  unloading over t he  unloading 

Length of stay time. 
been based upon a nominal 
length of  s tay  time upon 

- A l l  data  used f o r  comparisons i n  the foregoing have 

the  gross-payload ra t ios  i s  shown i n  f igure  13. It 
s t ay  t i m e  a t  Mars of 7 days. The e f f ec t  of the  

may be noted t h a t  f o r  t h e  range of s tay times shown, those longer than 7 days 
increase the  gross-payload f r ac t ions  f o r  short  t o t a l  transit times but  
decrease them f o r  longer. Another noticeable e f f ec t  i s  t h a t  the  t o t a l  
required t r a v e l  times associated with maximum payload r a t i o s  decrease with 
increasing length of s tay.  Hence, t he  t o t a l  mission t i m e  increases more 
slowly than s t ay  t i m e .  I n  t h e  examples given, each addi t ional  40 days of s tay  
t i m e  increases the  t o t a l  mission time by about 20 days. Actually, since the  
curves of  payload r a t i o s  a re  generally qui te  f l a t  i n  the  region of t h e i r  m a x i -  
mums, t he  t r a v e l  t i m e s  can be reduced somewhat f r o m  those associated with the  
m a x i m "  without ser iously reducing the  payload f r ac t ion .  I n  any case, the 
combination of  greater  propellant requirements and increased l i f e  support f o r  
planned s tay  times of increasing duration w i l l  be re f lec ted  i n  greater  i n i t i a l  
mass requirements or reduced gross payloads, or both. 

The ult imate i n  s tay  times might be considered t o  be t h a t  involved i n  
the  use of Hohmann-type t r a j e c t o r i e s  t o  Mars and return,  i n  which case t h e  
waiting period a t  Mars i s  comparable with the  t r a v e l  time. 
t i m e ,  s tay  time, date of arr ival  a t  Mars, and possible gross-payload r a t i o s  
f o r  various values of f o r  each type of mission mode using Holm"-type 
t r a j e c t o r i e s  are  l i s t e d  i n  f igu re  1-3 f o r  comparison. A s  noted e a r l i e r ,  veloc- 
i t y  increments required f o r  plane changes i n  Hohmann t r a j e c t o r i e s  a re  gener- 
a l l y  considerably l a rge r  than those i n  fast  missions. 
are taken in to  account, assuming t h a t  they a re  made by chemical propulsion 
with a spec i f ic  impulse of 445 secs and with i n e r t  f r ac t ions  appropriate t o  
t he  magnitude of t h e  ve loc i ty  increments, t h e  gross-payload r a t i o s  i n  the  
Hohmann-type missions are reduced t o  about 78 percent of the values l i s t e d  i n  
f igure  13, whereas those i n  the  fast  missions are  not appreciably affected 
(see f i g .  7 ) .  Even so, t he  advantage i n  terms of gross-payload f r ac t ion  l i e s  

The t o t a l  t r a n s i t  

k2 

If  these plane changes 
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with t h e  Hohmann-type t r a j e c t o r i e s  i f  comparison i s  r e s t r i c t e d  t o  the  same 
mission mode i n  each case. However, t h e  use of these t r a j e c t o r i e s  i n  a rendez- 
vous mode appears questionable because of t he  long t i m e  which would be spent 
by p a r t  of t he  crew i n  a parking o r b i t  about M a r s  (438 days i n  the  example). 
If atmospheric braking can be used t o  e f f ec t  capture in to  an o r b i t  about Mars, 
a fast mission including a s tay  t i m e  of one t o  several  months i n  the  rendez- 
vous mode ( f i g .  l 3 ( c ) )  would be more e f f i c i e n t ,  i n  t e r m s  of propellant-mass 
r a t io s ,  than t h e  Hohmann-type mission using t h e  d i r e c t  mode. 

Other Mission Character is t ics  

Although the gross-payload f r ac t ion  i s  an important f ac to r  i n  the assess- 
ment of mission requirements, several  other mission charac te r i s t ics  are a l so  
s igni f icant .  Selected here f o r  discussion are ea r ly  and l a t e  departures f r o m  
Earth; delayed and premature departures from Mars; atmosphere -entry ve loc i t ies ;  
outbound and inbound transit times; dates of a r r i v a l  a t  Mars; t he  distance of 
nearest  approach t o  the  Sun; and communication distances between Earth and the  
mission spacecraft .  

Early and la te  departures . from Earth. - As noted e a r l i e r ,  the  veloci ty  
requirements f o r  the  sub-ject missions- are calculated on the  assumption t h a t  
departure i s  i n i t i a t e d  from a near-Earth o r b i t .  T h i s  o r b i t  i s  assumed t o  have 
the  proper or ien ta t ion  f o r  launching the  mission c r a f t  a t  the required time 
i n t o  the  appropriate he l iocent r ic  t ra jec tory .  No assessment i s  made of  t h e  
weight pena l t ies  involved i n  adjusting the  i n i t i a l  o r b i t  t o  take i n t o  account 
t he  e f f ec t s  of delayed departures. Attention i s  r e s t r i c t e d  here t o  other  
weight penal t ies  incurred by departing e a r l i e r  o r  l a t e r  than some nominal 
scheduled time. 

Figure 1 4  shows the  date of departure f r o m  Earth o r b i t  associated with 
the  gross-payload f r ac t ion  mL f o r  scheduled departures.  The examples 
include t w o  types of rendezvous modes and the  d i r ec t  mode f o r  periods includ- 
ing the opposition of 1980. The la rges t  value of ZL i n  a l l  t he  examples 
occurs within a r e l a t i v e l y  narrow range of departure dates between approxi- 
mately 90 and 110 days before the  date of opposition. 
dates of arrival a t  Mars may d i f f e r  by as much as t w o  months, depending upon 
the mission mode. The f igure  also shows t h a t  t he  decrease i n  gross-payload 
f r ac t ion  i n  each case i s  more rapid f o r  departures made a f t e r  the  most oppor- 
tune date than f o r  those made e a r l i e r .  Likewise, t h e  r e l a t i v e  decrements i n  
&, with la te  departure dates a re  greater  i n  the  d i r ec t  and rendezvous modes 
with atmospheric braking a t  M a r s  than i n  the  rendezvous mode with propulsion 
braking at Mars. Another e f f ec t  of  departing on dates other than the  sched- 
uled one i s  tha t  the.  t o t a l  transit time i s  reduced f o r  l a t e ,  and increased 
f o r  ear ly  departures. 

A s  noted subsequently, 

The ra ther  large losses  i n  payload f r ac t ion  indicated i n  f igure  1 4  f o r  
nonoptimum departure dates can be minimized i n  some instances by adjusting 
cer ta in  mission parameters such as the date of arrival at  Mars and t h e  r a t i o  
of the outbound and inbound t r i p  times. Figure 1-5 i l l u s t r a t e s  the  improvement 
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which r e su l t s  from t h i s  reoptimization procedure. A t  each point on the  curves 
of KL shown i n  f igure  14, another curve can be drawn with t o t a l  t r a n s i t  time 
held constant bu t  with date of a r r i v a l  a t  Mars and individual t r i p  times 
varied.  Several such curves a re  shown in  f igu re  1.5. A s  i l l u s t r a t e d  i n  the  
f igure,  an outer  envelope curve can be drawn t o  include the  l a rges t  possible  
values of the  gross-payload f rac t ion  a t  any given departure date.  For depar- 
tu res  e a r l i e r  or  l a t e r  by more than about 10 t o  20 days than the  date a t  which 
&i~ 
accurately the pena l t ies  f o r  off  -schedule departures.  

i s  la rges t ,  the  outer  envelope ra ther  than the  inner curve assesses more 

If the  gross payload i s  assumed es sen t i a l ly  constant a t  the  value based 
on the  departure date associated with the  grea tes t  value of the  gross-payload 
f rac t ion ,  the  increase i n  i n i t i a l  mass required f o r  departing the (adjusted) 
Earth o rb i t  e a r l i e r  o r  la ter  than the  nominal time can be estimated. The 
addi t ional  mass, of  course, w i l l  be propel lants  and ine r t s .  

Figure 16 shows the  percent increase of i n i t i a l  m a s s  as a function of 
ear ly  and l a t e  departures f o r  various mission periods, mission modes, and s t ay  
times. I n  general, pena l t ies  f o r  departing e a r l i e r  o r  l a t e r  than 20 t o  30 
days become s igni f icant ly  large.  In  f igure  16(a) ,  the  e f f ec t  of the  par t icu-  
lar  opposition period of the mission i s  shown t o  be r e l a t ive ly  small f o r  la te  
departures, but appreciably la rge  f o r  premature launch dates.  P a r t  (b )  of  
the  f igure  indicates  t h a t  the  choice of  mission mode i s  highly s igni f icant  
with respect t o  required increases i n  i n i t i a l  mass i n  the  case of l a t e  depar- 
t u re s .  I n  both the  rendezvous mode tha t  depends upon atmospheric braking a t  
Mars and i n  the  d i r ec t  mode, t he  penal t ies  f o r  departures l a t e r  than about 
20 days a re  s ign i f icant ly  large; i n  t h e  rendezvous mode employing propulsion 
braking a t  Mars, they are about one-fourth t o  one-third as large as i n  the  other  
t w o  modes shown. The e f f ec t  on mass increase of  increasing the planned s t ay  
time a t  Mars i s  shown i n  f igu re  1 6 ( ~ )  t o  be e s sen t i a l ly  ins igni f icant  f o r  t h e  
range of s t ay  t i m e s  given. 

Delayed departure from Mars.- Another consideration i n  the  subject m i s -  
s ion  i s  t h e  poss ib i l i t y  t h a t  departure f r o m  Mars may be delayed f o r  some r ea -  
son. An example of the e f f ec t s  of delays on the  over -a l l  m a s s  r a t i o  i s  given 
i n  f igure  17. I n  calculat ing the  gross-payload f r ac t ions  required i n  case 
of  delayed departures, t he  re turn  t r a n s i t  time w a s  adjusted t o  make the  launch 
veloci ty  increment AV3 a minimum i n  each case. A s  shown i n  f igure  17, t h i s  
procedure resu l ted  i n  improving the  o r ig ina l  payload f rac t ions  i n  the  case of 
the higher energy missions but created a serious d e f i c i t  i n  t h e  f r ac t ions  f o r  
missions u t i l i z i n g  near -maxim payload r a t i o s .  To allow f o r  unavoidable 
delays in  departure i n  the  more e f f i c i e n t  missions, addi t ional  propellants 
would need t o  be car r ied  f o r  the resu l t ing  higher energy re turn  t r i p s  t o  
Earth. A s  shown i n  the  lower p a r t  of f igure  17, t h e  re turn  t r i p s  f o r  delayed 
departures require more time than f o r  scheduled departures i n  the  case of t he  
higher energy missions, bu t  l e s s  time i f  near-maximum payload f r ac t ions  a re  
u t i l i z e d .  Total  mission time, however, increases with increasing delays i n  
a l l  cases shown i n  the  f igure .  



Premature departures fromMars.- Next consider the  e f f ec t  of an e a r l i e r  
than planned departure from Mars. 
f r ac t ion  and on t o t a l  t r a n s i t  times of such contingencies. 
t o t a l  t rave l  t i m e s  shown i n  the  figure, gross-payload f rac t ions  are  more favor- 
able when Mars i s  departed earlier than planned. This means, of course, t h a t  
an excess of propel lants  could be used t o  shorten the  return t r i p  o r  perhaps 
t o  br ing back more s c i e n t i f i c  samples. Likewise, although the  t o t a l  t r a v e l  
t i m e  i s  increased f o r  ea r ly  departures, i n  t he  region of more favorable pay- 
load f r ac t ions  t h e  ac tua l  t o t a l  mission time i s  l e s s  than f o r  scheduled 
departures. 

Figure 18 il lustrates the  e f f ec t  on payload 
For a l l  planned 

From the foregoing discussion of  delayed and premature departures f rom 
M a r s  f o r  t he  re turn  t o  Earth, it might be usefu l  t o  plan f o r  a s tay period at  
Mars somewhat longer than ac tua l ly  intended i n  order t o  provide a margin of 
sa fe ty  i n  the  mission.  Some advantage accrues from t h i s  procedure, inasmuch 
as a combination of outbound and re turn  t r a j e c t o r i e s  can be chosen t o  reduce 
propellant requirements of t he  en t i r e  mission t o  below those based upon o p t i -  
mizing the  re turn  t r a j ec to ry  only. 

Atmosphere-entry ve loc i t i e s .  - Veloci t ies  of en t ry  in to  the  atmosphere of 
Earth upon re turn  a re  shown i n f i g u r e  19. The dates given, 191, 1-95, and 
1980, r e f e r t o  the  opposition of  Mars included i n  the  mission period. Two 
types of rendezvous modes and the  d i r ec t  mode are  included in  the f igure .  
s ign i f icant  cha rac t e r i s t i c  of t he  entry ve loc i t i e s  i n  a l l  cases shown i s  t h a t  
they increase with increasing t o t a l  transit time i n  the  regions where more 
favorable gross-payload f rac t ions  are found. I n  the  neighborhood of t h e  maxi- 
mum values of the gross-payload r a t i o s  ( the  approximate t o t a l  t r a v e l  times 
associated with the  maximums are indicated by arrows), en t ry  ve loc i t ies  vary 
from about 48,000 fps  (rendezvous mode with atmospheric braking a t  Mars, 191) 
t o  near ly  74,000 fps  (rendezvous mode with propulsion braking a t  Mars, 1-35). 
I n  the  d i r ec t  mission mode, entry in to  the EarthOs atmosphere i s  made a t  about 
64,000 fps  i n  both 195 and 1980. The influence of the  hel iocentr ic  distance 
of Mars a t  the  time of departure f r o m  the  planet  can be seen i n  the d i spa r i ty  
between entry ve loc i t i e s  f o r  191 (Mars near per ihel ion)  and f o r  1 9 5  and 1980 
(Mars i n  neighborhood of aphelion).  The e f f ec t  of the unloaded f r ac t ion  k2 
i s  not s ign i f icant ly  la rge .  Discontinuities observed f o r  entry ve loc i t i e s  of 
1.95 missions a re  associated with the  occurrence of  m a x i m u m  values of gross- 
payload f rac t ions  f o r  a r r i v a l  a t  M a r s  both before and after the  date of opposi- 
t i o n ,  as discussed previously. 

One 

Figure 20 shows t h a t  en t ry  ve loc i t ies  increase not only with increasing 
t r a n s i t  time but  a l s o  with increasing s tay  time f o r  the  range of s tay times 
shown. The ve loc i t i e s  shown are those associated with m a x i m  gross-payload 
f rac t ions  i n  each case. The e f f ec t  of increasing s tay  time i s  considerably 
greater  i n  195 than i n  1980 missions. 
10 days of s tay  time means an increase of about 400 t o  600 fps  i n  en t ry  
velocity,  depending upon the  mission mode; i n  1 9 5 ,  the  corresponding increase 
i n  en t ry  veloci ty  i s  from approximately 900 t o  1200 fps .  I n  both periods, 
the  increase i s  l e a s t  f o r  t he  rendezvous mode with propulsion braking at Mars, 
and nearly the  same f o r  the other two modes considered here. A t  some much 

I n  1980, f o r  example, each addi t ional  
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longer s tay  t i m e ,  the en t ry  ve loc i t i e s  can be expected t o  decrease and 
reach the  values typ ica l  of  Hohmann-type missions (37,500 fps  i n  1971, and 
38,230 fps  i n  1978). 

I n  view of t h e  very la rge  atmosphere-entry ve loc i t i e s  at Earth associated 

An example of using 
with the  rendezvous mode employing propulsion braking a t  Mars, the  e f f ec t s  of 
using propulsion th rus t  t o  reduce them are  examined here. 
chemical propulsion ( a i  proportional t o  AVi)  t o  reduce entry ve loc i t ies  at 
Earth t o  parabolic speed i s  given i n  f igure  21, and the  var ia t ions  of gross- 
payload f r ac t ions  with t o t a l  transit time are compared with all-atmospheric 
braking a t  Earth. I n  the  former instance, k3 represents the  r a t i o  of  t he  
m a s s  of the  mission module t o  the  gross payload; i n  both cases, k2 i s  the  
f r ac t ion  of t he  gross payload represented by the martian excursion vehicle 
l e f t  i n  o r b i t  about Mars a t  departure. Nuclear propulsion i s  assumed f o r  a l l  
stages other than t h a t  used f o r  reducing entry ve loc i t ies .  The example ind i -  
cates  t h a t  propulsion braking t o  reduce entry ve loc i t i e s  at Earth requires  
s ign i f icant ly  more propellant than atmospheric braking and about two months of 
addi t ional  t r a v e l  t i m e .  
unretarded entry ve loc i ty  i s  about 77,000 fps .  If atmospheric braking a t  Mars 
i s  assumed, the  corresponding en t ry  veloci ty  at Earth i s  somewhat less, 
7O,OOO, and the  gross-payload f r ac t ion  f o r  k2 = 0.6 i s  about 34 percent f o r  
a t o t a l  transit t i m e  of 400 days ( c f .  f i g s .  l 3 (  e )  and PO(b)) . The use of 
atmospheric braking a t  e i t h e r  Mars or Earth or at  both thus increases the  
eff ic iency and decreases the  required t r a v e l  t i m e  of t he  mission i n  comparison 
with the  use of corresponding propulsion braking. However, it should be 
pointed out  that the  f e a s i b i l i t y  of safe entry in to  the  atmosphere of t he  
Earth at t h e  high ve loc i t i e s  c i t e d  remains t o  be demonstrated. 

For t h e  s tay t i m e  used i n  the  example (47 days), the  

Veloci t ies  of en t ry  in to  the  martian atmosphere i n  the  cases of t he  
d i r ec t  mode and of the rendezvous mode with atmospheric braking are  i l l u s -  
t r a t e d  i n  f igure  22. I n  the  d i r ec t  mode, the f igure  indicates  t ha t  the  en t ry  
ve loc i t i e s  associated with maximum gross -payload f r ac t ions  a re  approximately 
32,000 fps  i n  1980, 27,000 f p s  i n  1975, and 26,000 fps  i n  1971. Corresponding 
ve loc i t ies  i n  the rendezvous mode a re  somewhat l e s s  than i n  the  d i r ec t  mode 
i n  1980 (29,000 f p s ) ,  but  are  e s sen t i a l ly  the  same i n  1 4 5  and 1.41. 

The e f f ec t  of s t ay  time at  M a r s  on en t ry  ve loc i t i e s  in to  the  martian 
atmosphere i s  shown i n  f igure  23. I n  general, f o r  s tay  times up t o  about 
60 days, each addi t ional  10 days of s tay  time involves an increase of  400 t o  
600 fps  i n  en t ry  velocity,  depending upon the  mission mode and t he  date of 
opposition included i n  the  mission. 

T r a n s i t  times, outbound and re turn . -  Another mission cha rac t e r i s t i c  of 
i n t e r e s t  i s  t h e  divis ion of t i m e  between the  outbound and re turn  legs  of t he  
mission. 
sion modes and f o r  th ree  mission periods.  The t o t a l  t r i p  times shown are 
those f o r  which the  payload f r ac t ion  i s  la rges t  i n  each case. I n  general, 
if there  are  t-hree ve loc i ty  stages, as i n  the  rendezvous mode with propulsion 
braking a t  Mars, t he  t o t a l  t r a n s i t  t i m e  i s  divided near ly  equally between the  
outbound and re turn  t r i p s ;  if only two major veloci ty  increments are required, 
as i n  the d i r e c t  mode and t h e  other  rendezvous mode, more t i m e  i s  required f o r  

Such information i s  summarized i n  f igu re  24 f o r  three types of m i s -  



t he  re turn  leg  than f o r  the  Earth-to-Mars t r i p .  Although increasing the  s t ay  
t i m e  has the  e f f e c t  already noted of reducing the  t o t a l  t r i p  time f o r  which 
the  payload f r ac t ion  i s  maximum, it does not mater ia l ly  change the  r a t i o  shown 
f o r  the  t r i p  times out and back. 

Dates of a r r i v a l  a t  Mars.- The date of arrival at Mars i s  s igni f icant  
f o r  i t s  re la t ionship  with The martian season. 
each season i n  the  northern hemisphere of Mars i s  given. The c e l e s t i a l  longi- 
tudes of Mars a t  the  beginning of northern spring, summer, autumn, and winter  
a re  8 4 O ,  17h0, 264O, and 35b0, respectively.  
the martian o r b i t  i s  near ly  335'; hence, as f o r  t he  Earth, northern win ter  
occurs when the  planet  i s  r e l a t ive ly  close t o  the  Sun. Because of t he  o r b i t a l  
eccentr ic i ty ,  the  seasons vary i n  length. I n  terms of Earth days, t h e  lengths 
of the  northern seasons are ,  respectively,  199, 184, 146, and 158 days f o r  
spring, summer, autumn, and winter.  

I n  f igure  1, the  beginning of  

The longitude of per ihel ion of 

Figure 25 shows the  dates of axrival a t  Mars as a function of t o t a l  
transit t i m e s  f o r  three types of mission modes and f o r  periods including the  
oppositions of 1971, 1 9 5 ,  and 1980. Arrivals a t  Mars take place a t  dates 
l a t e r  r e l a t ive  t o  opposition the  f a r t h e r  the  planet  i s  f r o m  the  Sun during 
opposition. The e f f ec t  of t h e  magnitude of the  unloaded f r ac t ion  k2 i s  t o  
cause the  a r r i v a l  date t o  increase by generally a few days with increasing 
k2. 

Figure 26 presents t he  date of a r r i v a l  associated with maximum gross- 
payload f rac t ions  as a function of planned s t ay  time a t  Mars. 
of s tay times shown, increasing the  s tay  period requires  somewhat e a r l i e r  
a r r iva l s .  For s t ay  times longer than those included i n  t h e  f igure ,  the t rend 
should be reversed, since f o r  the long waiting periods cha rac t e r i s t i c  of 
Hohmann-type missions, a r r iva l s  occur considerably l a t e r  a f t e r  opposition than 
any of those shown ( e . g . ,  186 days i n  1-975, l7l days in  1978). 
a l s o  shows tha t  t he  date of arrival can vary as much as two months with m i s -  
s i on  mode, other  things being the  same. From f igures  25 and 26, and f r o m  data 
given i n  I'igure 1, the  seasons during which the  s t ay  t i m e  on Mars would occur 
a re  obtained f o r  t he  years 1971, 1975-76, and 1980. They are  l i s t e d  below 
according t o  the  mission mode which might used. 

For the  range 

The f igure  

Mission mode Year Northern season 
. .  

Rendezvous mode with propulsion 
braking a t  Mars 1.41. Midwinter 

197 5 Midspring 
1980 Midsummer 

Rendezvous mode with atmospheric 
braking a t  Mars, and d i r ec t  

Late f a l l  
Early spring 

1980 Early summer 

mode 197 1 
197 5 

The arrival date thus has a bearing on invest igat ions of t he  martian 
seasonal phenomenon commonly termed "the wave of darkening.' ' 
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Nearest approach t o  the Sun.- A study of  t h e  cha rac t e r i s t i c s  of the  tra- 
j ec to r i e s  employed t o  go f r o m  Earth t o  Mars and subsequently f r o m  Mars back t o  
Earth reveals one pa r t i cu la r  feature of concern i n  mission planning. A s  shown 
i n  f igure  27, t he  vehicle on the  re turn  leg approaches the Sun as closely as 
0 . 4  t o  0 .6  a .u .  when gross-payload f rac t ions  near the  m a x i m u m  values are  con- 
sidered. Figure 27(a) shows t h e  e f f e c t  of the opposition period on the  p e r i -  
helion distance; f igure  27(b) indicates  the  e f f ec t  of mission mode; and the  
influence of the  planned s t ay  time i s  shown i n  f igure  27(c) .  
the  f igure ,  it appcars t h a t  t he  he l iocent r ic  distance of Mars a t  the  t i m e  of 
departure from t h a t  planet i s  associated with the  per ihel ion distance of t he  
return leg.  The c loses t  approach t o  the Sun seems t o  occur when the  heliocen- 
t r i c  distance a t  departure i s  grea tes t  (1975 and 1980). With regard t o  m i s -  
s ion mode, f igure  27(b) shows t h a t  t he  nearest  approach t o  the Sun occurs with 
the  rendezvous mode which uses propulsion braking a t  Mars. It i s  c l ea r  from 
f igure  27(c) t h a t  when the  s tay  t i m e  i s  increased, the re turn  t r i p  tends t o  
approach closer  t o  t he  Sun. However, if s tay  times a re  prolonged enough, t h e  
per ihel ion distance w i l l  increase u n t i l  t h e  distance of  t he  o r b i t  of t he  Earth 
i s  a t ta ined,  as i n  the  Hohmann-type missions. 

From pa r t  (a) of 

Communication d is tance . -  Figure 28 presents the  distance between the  
Earth anaMars as  a function of t i m e  measured f r o m  the  date of opposition f o r  
the  years 1971, 1975, and 1980. The dates of departure from Mars associated 
with maximum gross-payload r a t i o s  f o r  various mission modes are  indicated i n  
the  f igure  f o r  a '7-day s tay  a t  Mars. For longer s tay  times, t he  distances 
would increase somewhat, since the  combination of longer s tay  t i m e s  and ear- 
l i e r  a r r iva l s  causes a ne t  increase i n  the  date of departure. The distances 
i n  each case represent approximately the m a x i m u m  communication distances 
involved i n  the mission. Actually, the  distance between the  returning vehicle 
and Earth increases somewhat following departure from Mars. The var ia t ion  of  
communication distance between the  vehicle and Earth with t i m e  s ince departure 
f r o m M a r s  i s  i l l u s t r a t e d  i n  f igure  29. The m a x i m  distance i s  only about 
10 percent greater  than the  distance a t  departure; however, f igure  29 shows 
t h a t  a considerable time (about 100 days) may elapse before the  communication 
distance becomes l e s s  than t h a t  a t  departure f rom Mars. 

Another important aspect of  the  communications problem i n  the  mission i s  
i l l u s t r a t e d  i n  f igure  30. Here the  outbound and inbound t r a j e c t o r i e s  of t he  
mission used f o r  an example i n  the  previous f igure  a re  shown. Typically, an 
opposition of t he  vehicle and Earth occurs on the  outbound leg,  and an infe-  
r i o r  conjunction takes place near t h e  end of the  re turn  t r i p ,  as  shown. Dur- 
ing such periods, when the  Sun i s  i n  o r  close t o  the  l i n e  of s ight  between the  
vehicle and Earth, s o l a r  noise w i l l  present d i f f i c u l t i e s  i n  communications. 

CONCLUDING REMARKS 

The foregoing presentation has indicated the  influence of a number of 
parameters on the  attainment of maxi." gross-payload f rac t ions  i n  fas t  manned 
Mars missions. 
sons made, but  such matters as select ion of a mission mode or t he  width and 
shape of a launch window w i l l  depend upon many other considerations besides 

Certain broad conclusions may be drawn from the  many compari- 



t h e  information presented here. C r e w  s ize ,  type of ecological system used 
(open, closed),  weights of vehicle components and of equipment, propulsion- 
system charac te r i s t ics ,  booster capabi l i t i es ,  Earth launch si tes,  sa fe ty  and 
r e l i a b i l i t y ,  w i l l  a l l  play an important p a r t  i n  formulating t h e  method of 
accomplishing the  mission.  Several trends indicated by the present study are 
summaxized here. Unless noted otherwise, d i r e c t  descent by atmospheric brak- 
ing i s  assumed a t  Earth return.  

Simplified calculat ions of t o t a l  ve loc i ty  requirements f o r  fast manned- 
landing missions t o  Mars over a f u l l  cycle of oppositions (191 t o  1988) ind i -  
ca t e  t h a t  minimum requirements do not vary by more than about 10 t o  1-5 percent 
(4,000 t o  5,000 f p s ) ,  depending upon the  mission mode-assumed. 

The use of nuclear propulsion with a spec i f ic  impulse of 820 sees permits 
gross-payload f r ac t ions  about 2 .5  t o  3 t i m e s  l a rger  than those possible with 
chemical propulsion with a spec i f ic  impulse of  445 sees f o r  t he  opposition of 
1.975. 

The subs t i tu t ion  of atmospheric f o r  propulsion braking i n  achieving cap- 
tu re  in to  a l o w  c i r cu la r  o r b i t  about Mars a t  arr ival  not only increases gross- 
payload f r ac t ions  by about 1-1/2 times, but  a l s o  reduces t o t a l  t r a v e l  times by 
nearly 2 months. I n  the  d i r ec t  mission mode, gross-payload f r ac t ions  are 
about 10 percent smaller than those i n  the  rendezvous mode with propulsion 
braking a t  Mars, and t he  t o t a l  t r a v e l  time i s  50 t o  70 days shorter ,  other  
things being equal. 

With any mode, maximum gross -payload f r ac t ions  decrease with increasing 
s t ay  t i m e  up t o  a t  least three months i n  fast missions. For s t ay  times of 
several  hundred days, Hohmann-type missions permit gross -payload r a t i o s  la rger  
than do fast missions for the  same mission mode. Energy requirements are 
higher f o r  delayed departures f r o m M a r s ,  and lower f o r  premature departures. 
Planning f o r  longer than intended s tay  times at  Mars ra ther  than f o r  possible  
delays i n  departure can more economically provide a margin of sa fe ty  i n  the  
mission. 

For a s t ay  t i m e  of 7 days a t  Mars, en t ry  ve loc i t i e s  in to  the martian 
atmosphere range from about 26,000 fps  (1971) t o  32,000 fps  (1980), depending 
upon the  mission mode considered. Likewise, en t ry  ve loc i t i e s  in to  the t e r r e s -  
t r i a l  atmosphere upon return vary from about 48,000 fps  (rendezvous mode with 
atmospheric braking a t  M a r s ,  1971) t o  near ly  74,000 fps  (rendezvous mode with 
propulsion braking a t  Mars, 1915) .  I n  the d i r ec t  mode, both i n  1975 and 1980, 
Earth en t ry  ve loc i t i e s  a re  approximately 64,000 fps .  Up t o  about 3 months, 
each addi t ional  10 days of s tay time a t  Mars increases the  atmosphere-entry 
ve loc i t ies  at Earth by roughly 1000 fps  i n  1 9 5  and 500 fps  i n  1980. Using 
propulsion braking t o  reduce t o  parabolic speed the  atmosphere-entry veloci-  
t i e s  i n  the  195 mission (rendezvous mode with propulsion braking a t  Mars) 
reduced m a x i m  gross-payload f rac t ions  t o  about l / 3  t o  1/2 of those a t ta ined  
with no propulsion braking a t  Earth and required about 2 months of  addi t ional  
t r a v e l  time. 
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Departures from Earth o r b i t  e a r l i e r  or later than t h e  nominal date 
associated with maxi" gross-payload f rac t ions  require  s ign i f icant  increases 
i n  the  i n i t i a l  m a s s  only when they are more than 10 days from the  nominal date. 

I n  the  fast  missions considered, re turn  t r a j e c t o r i e s  associated with 
m a x i m  gross-payload r a t i o s  have per ihel ion distances as s m a l l  as about 0.4 
t o  0.6 a.u., depending upon the  opposition period of t h e  mission, t he  mission 
mode, and t he  length of the s t ay  t i m e  a t  M a r s .  Communication distance between 
the  mission vehicle and Earth can be about 2 a.u. i n  missions conducted during 
the  oppositions of 1975 and 1980 with the  rendezvous mode using propulsion 
braking at Mars. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Ju ly  24, 1964 



CALCULATIONS OF VELOCITIES AND MASS RATIOS 

This sect ion describes the  procedures followed i n  calculat ing the  data  
required i n  the  present study. The notation i s  summarized i n  appendix B .  

MISSION VELOCITIES 

For t h i s  study a large number of calculat ions were required t o  explore 
veloci ty  requirements over wide ranges of t r a n s i t  t i m e s  and launch dates and 
over a complete cycle of oppositions. Therefore, several  simplifications a re  
made i n  the  analysis  t o  obtain the  data  required i n  each phase of a mission 
without unduly long and complicated calculat ions.  

One s implif icat ion made a t  the outse t  i s  to assume tha t  t he  e l l i p t i c  
o r b i t s  of  Mars and Earth l i e  i n  the  same plane, namely tha t  of  t he  e c l i p t i c .  
This i s  done i n  order t o  avoid highly incl ined he l iocent r ic  t ransfer  o r b i t s  
between Mars and Earth.  The inc l ina t ion  of these transfer orbLts with respect 
t o  the  plane of  t h e  e c l i p t i c  approaches 90' as the  angular distance t rave l led  
by the  mission vehicle approaches 180~. For such highly inclined orb i t s ,  the  
launch ve loc i t ies  f r o m  Earth o r  Mars and the  r a t e s  of  closure of the  vehicles 
with the planets  become inordinately large.  I n  pract ice ,  these highly 
incl ined o r b i t s  can be avoided with r e l a t i v e l y  small addi t ional  veloci ty  incre- 
ments beyond those required i n  the case of coplanar planetary o r b i t s .  

I n  one simple approach, t he  vehicle can be assumed t o  follow the  t r a j e c -  
t o ry  i n  the  o r b i t a l  plane of the departure planet ,  as in  the  two-dimensional 
case, u n t i l  it reaches a point a t  which the  difference i n  c e l e s t i a l  longitudes 
of the vehicle and of the  t a rge t  planet a t  the  known time of a r r i v a l  i s  go0; 
at  t h i s  point t he  angle of inc l ina t ion  required f o r  the  t ransfer  t ra jec tory  t o  
i n t e r sec t  t he  ac tua l  a r r i v a l  posi t ion of t he  t a rge t  planet i s  a minimum (equal 
t o  the c e l e s t i a l  l a t i t u d e  of t he  t a rge t  planet  a t  a r r i v a l  r e l a t ive  t o  the  
o rb i t  of the  departure p l ane t ) .  
required t o  e f f ec t  t he  plane change thus depends on the  veloci ty  i n  the  t r ans -  
f e r  o r b i t  a t  t he  point  described and on t h e  appropriate r e l a t i v e  c e l e s t i a l  
l a t i t ude .  For an Earth-to-Mars t ra jec tory ,  f o r  example, t he  veloci ty  incre-  
ment AVpl required f o r  a plane change can be estimated from the equation 

The magnitude of the  veloci ty  increment 

where VT 
question. 
Since the c e l e s t i a l  l a t i t u d e  of Mars does not exceed 1.85' (0.0324 radian) ,  
the increment can be closely approximated from 

i s  the hel iocentr ic  t r ans fe r -o rb i t a l  veloci ty  a t  the point i n  
(The notat ion used in  t h i s  paper i s  summarized i n  appendix B ) .  
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The hel iocentr ic  veloci ty  of t he  vehicle as it approaches t o  within 90' of the  
a r r i v a l  point will be comparable i n  magnitude with the  o r b i t a l  speed of t he  
Earth, o r  about lo5 fps .  Hence, the  plane-change veloci ty  increment can be  
expected t o  vary from zero t o  not much more than roughly 3000 fps ,  depending 
ch ief ly  upon the  c e l e s t i a l  l a t i t u d e  of Mars a t  arrival. The foregoing appl ies  
a lso t o  re turn t r i p s ,  M a r s  t o  Earth. 

It should be noted that the  simple procedure described here for a l l e v i a t -  
ing the  excessively large ve loc i t i e s  encountered i n  single-impulse type tra- 
j ec to r i e s  by employing a second impulse i s  l i k e l y  t o  give conservative (some- 
what large)  values f o r  t he  plane-change veloci ty  increments. Somewhat smaller 
values could be obtained i f  t he  var ia t ion of veloci ty  along the  t r ans fe r  tra- 
jectory were t o  be included i n  an optimization procedure. For example, i n  
reference 4, Fimple uses  a su i tab le  combination of plane changes made both 
during the  launch maneuver and during midcourse t o  minimize plane-change 
veloci ty  requirements. 

Earth Departure 

The veloci ty  increment calculated i s  t h a t  required t o  i n j e c t  a vehicle 
f rom an o rb i t  about t he  Earth in to  a hel iocentr ic  conic o r b i t  connecting the 
centers of Earth and Mars. A vehi- 
c l e  following the  t r a j ec to ry  f r o m  a 
massless Earth t o  a massless Mars 
a r r ives  on a preselected date after 
a t r i p  l a s t ing  T, days. A s  noted, 
the  o rb i t s  of both Mars and Earth a re  
regarded as unperturbed Keplerian 
e l l i p ses  lying in  the  plane of the  
ec l ip t i c ,  so t h a t  the  posi t ions of 
both planets  at appropriate t i m e s  can 
readi ly  be computed. If the angle P 
i s  the difference between the  celes-  
t i a l  longitudes of Mars at a r r i v a l  
and of Earth a t  departure, and 
and rBD are the  corresponding h e l i -  
ocentr ic  distances of t h e  planets  
(see sketch ( a ) ) ,  t he  following equa- 
t ions  can be used t o  f i n d  the  eccen- 

a1 of a he l iocent r ic  conic t r a j e c -  
t o ry  which passes through the  posi-  
t i ons  of t he  two planets  at t h e  s t a t ed  
times. 

'@A 
Orbit  of Eorth 

t r i c i t y  el and the  semimajor axis Orbit of Mors 

Sketch (a) 



The only unknown quant i ty  i n  these equations i s  the  per ihel ion constant 
This parameter i s  varied i n  an i t e r a t i v e  scheme t o  m a k e  t he  computed time 

l i m i t .  For values of Po which give eccen t r i c i t i e s  less than uni ty ,  t he  
equation used f o r  computing TIC i n  days i s  

Bo. 
from Earth t o  Mars agree with the  s t ipu la ted  t i m e  T, within a specif ied 

e , ( l  - el2) s i n  p0 
1 + e, cos Po 1 , e, < 1 

1 + e, 

and f o r  eccen t r i c i t i e s  grea te r  than uni ty ,  

When a value of Po 
sa t i s f ac to r i ly ,  t he  eccent r ic i ty  and semimajor axis corresponding t o  t h i s  
value can be used t o  obtain the  hel iocentr ic  ve loc i ty  a t  any point i n  t h e  tra- 
jectory.  Consistent with t h e  approximate nature of t he  present analysis,  t he  
res idua l  veloci ty  
a t  the  point  of t r ans i t i on  from the  geocentric hyperbolic o r b i t  t o  the i n t e r -  
planetary hel iocentr ic  t r a j ec to ry  i s  calculated as the  vector difference 
between the  veloci ty  i n  the  la t ter  a t  a point  corresponding t o  the  posi t ion 
of Earth a t  departure and the  o r b i t a l  ve loc i ty  of Earth a t  t h a t  po in t .  
fur ther  assumed here t h a t  t h i s  res idua l  ve loc i ty  at the  point of t r a n s i t i o n  
i s  equal t o  t h e  geocentric hyperbolic excess veloci ty .  

i s  found such t h a t  the  s t ipu la ted  t r i p  time i s  matched 

VR, which the  vehicle should have r e l a t i v e  t o  the  Earth 

It i s  

The impulsive veloci ty  
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above the  surface 

(A41 

the  equator ia l  

increment AV, required a t  launch f r o m  an o r b i t  h, miles 
of  Earth i s  then given by 

1 / 2  1/2 
’ *P@ 

= (% + h, + gl) - (% ?hJ 

where 1 - 1 ~  i s  the  grav i ta t iona l  parameter (q) and i s  
radius of Earth.  For thrust-to-weight ra t ios  of i n t e r e s t  here, the  e f f ec t s  of  
gravi ty  losses  amount t o  a few percent of AV,. On the  other  hand, if t h e  
o r b i t a l  a l t i t u d e  h, f r o m  which the  mission commences i s  considered t o  be 
200 t o  300 m i l e s ,  and if  calculat ions a re  made with h, = 0, the  calculated 
values of AV, a re  a f e w  percent too high. I n  the  procedure adopted here, 
gravi ty  losses  are ignored and the  o r b i t a l  a l t i t u d e  i s  taken as zero. I n  t h i s  
way, calculat ions are considerably simplified without introducing large e r ro r s  
i n  the  mass r a t i o s  determined from AV,. Accordingly, equation (A4) i s  nor- 
malized i n  t e r m s  of  the  veloci ty  of escape f r o m  Earth (2p.a/R&1’2, and 
rewri t ten as  

Mars Arrival 

The second veloci ty  increment calculated i s  t h a t  necessary t o  t r ans fe r  
the  vehicle from the he l iocent r ic  t r a j ec to ry  (discussed i n  t h e  preceding sec- 
t i on )  i n to  an o r b i t  about the  planet .  The r a t e  of closure between the  vehicle 
and Mars i s  calculated i n  a manner analogous t o  t h a t  used t o  f i n d  the  veloci ty  
VR, i n  the case of Earth departure; t h a t  i s ,  f r o m  the  vector difference 
between the  he l iocent r ic  veloci ty  at a point corresponding t o  the  posi t ion of  
Mars a t  a r r i v a l  and the  o r b i t a l  veloci ty  of Mars at tha t  po in t .  Likewise, the  
r a t e  of closure i s  taken t o  be the  veloci ty  of approach 
This veloci ty  i s  then increased by gravi ta t iona l  accelerat ion t o  a f i n a l  
veloci ty  Vf of the  vehicle a t  i t s  nearest  approach t o  Mars. The f i n a l  
veloci ty  i s  given by 

V R ~  at i n f i n i t y .  

where h2 i s  the  a l t i t u d e  above t h e  surface of Mars a t  nearest  approach. The 
veloci ty  increment AV, required t o  obtain an o r b i t  about Mars depends not 
only upon the  ve loc i ty  of approach VR and the  a l t i t u d e  h2, but a l s o  upon 
the  eccent r ic i ty  ef of t h e  o r b i t  es t%lished.  From the  equation f o r  AV,, 

it i s  apparent that a highly eccentr ic  o r b i t  would be advantageous i n  mini- 
mizing AV, requirements. I n  t e r m s  of t he  t o t a l  mission, however, t h e  advan- 
tages noted f o r  e l l i p t i c a l  o r b i t s  over a c i r cu la r  o r b i t  would be o f f s e t  t o  
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some degree by t h e  increase i n  the  m a s s  of propel lants  required f o r  an 
excursion vehicle t o  achieve rendezvous with a parent c r a f t  i n  the  higher 
energy o rb i t s .  I n  t h e  present preliminary study, a t ten t ion  i s  r e s t r i c t e d  t o  
c i r cu la r  parking o r b i t s  upon arrival a t  Mars i n  the  rendezvous mode with pro- 
pulsion braking. Likewise, calculat ions f o r  both Vf and AV, are made with 
h2 taken as zero. The equation used f o r  AV2 i s  thus 

where p 
Earth. 

i s  the  r a t i o  of the  veloci ty  of escape f o r  Mars t o  t h a t  f o r  the  

I n  the  rendezvous mode with atmospheric braking at  Mars, -and i n  the  
d i r ec t  mode, t he  ve loc i ty  of en t ry  into the  martian atmosphere can be obtained 
from the  s implif ied expression f o r  vf, o r ,  

Mars Departure 

The t h i r d  ve loc i ty  increment calculated i s  t h a t  used a t  departure f rom 
Mars. 
t r i c  t r a j ec to ry  i s  e s sen t i a l ly  the  same as t h a t  described e a r l i e r  f o r  t he  
Earth t o  Mars t r i p .  If the  rendezvous mode i s  assumed (launch f r o m  martian 
o r b i t ) ,  gravi ty  losses  are disregarded and the  o r b i t a l  a l t i t u d e  i s  considered 
t o  be zero, as before.  For the  d i r ec t  mode, however, both gravi ty  and drag 
losses  should be considered. I n  t h i s  mode it i s  assumed t h a t  the  e n t i r e  vehi- 
c l e  ( l e s s  any mass unloaded a t  the surface o f  Mars) would f i r s t  be launched 
i n t o  a parking o r  coasting o rb i t .  
a t  an a l t i t u d e  of about 300 miles, drag and gravi ty  losses  equivalent t o  about 
2500 fps  appear t o  be appropriate and t h i s  value i s  a r b i t r a r i l y  assigned here 
t o  represent these losses .  The veloci ty  increment AV3 required t o  depart 
the o r b i t  f o r  the re turn  t r i p  i s  calculated f r o m  

The procedure f o r  f inding the o r b i t a l  elements of t he  re turn  heliocen- 

For es tabl ishing a c i r cu la r  parking o r b i t  

Here V R ~  i s  analogous t o  V R ~  used t o  ca lcu la te  t he  veloci ty  increment f o r  
in jec t ion  in to  the  Earth t o  Mars hel iocentr ic  t r a j ec to ry .  
veloci ty  increment i s  then e i the r  

The t h i r d  major 
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f o r  t he  rendezvous mode, or 

for t he  d i r ec t  mission mode. 

Earth Return 

The last  phase of the  mission i s  considered here t o  be a capsule making 
a d i r ec t  en t ry  in to  the  Earth 's  atmosphere and descending t o  Earth ch ief ly  by 
atmospheric braking. Calculations f o r  the  veloci ty  of entry into the  terres- 

a re  simplified i n  the  same manner as t h a t  used t o  f i n d  t r i a 1  atmo sphere 
V E ~  i n  a previous c t ion .  The equation used i s  

where VR, 
If propulsion braking i s  contemplated f o r  reducing en t ry  ve loc i t ies ,  the  veloc- 
i t y  increment i s  found by taking the difference between the  veloci ty  given by 
equation (Ag) and the s t ipu la ted  en t ry  velocity.  

i s  the  rate of closure between the  returning vehicle and Earth. 

The procedures out l ined i n  the  foregoing have been programmed for a high- 
speed d i g i t a l  computer. Data were obtained f o r  individual  t r a n s i t  times T1 
and T2 from 60 t o  360 days f o r  a range of dates  of a r r i v a l  a t  Mars f o r  each 
opposition between the  years 1971 and 1988. 

A second program w a s  a l so  constructed t o  inves t iga te  the  conditions 
required t o  minimize the  sum of the  various major veloci ty  requirements i n  any 
given mission. This program f inds  the  l e a s t  value of t he  sum f o r  a given 
t o t a l  t r a n s i t  t i m e ,  s tay  time, and date of  a r r i v a l  a t  M a r s .  These values are  
then p lo t ted  as a function of the  date of a r r i v a l  a t  M a r s  t o  f i n d  the  minimum 
of  the  least t o t a l  veloci ty  increments f o r  the given t o t a l  t r a n s i t  time and 
s tay  time. 

Mass Ratios 

I n  the following paragraphs, a description i s  given of t h e  procedure used 
t o  evaluate parametrically the  r a t i o  of the mass of t h e  gross payload t o  the  
i n i t i a l  mass i n  o rbs t  about Earth. 

I n  t h i s  preliminary study, only four  main s tages  of major veloci ty  incre-  
ments are considered. The basic  equation from which the  analysis  begins i s  
simply 
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where M, i s  the  mass of the  gross payload, 
Mpi i s  the  m a s s  of propellants used i n  the  i t h  stage,  and a i  i s  t h e  r a t i o  
of the m a s s  of i n e r t s  t o  the  mass of propel lants  f o r  t h a t  s tage.  A s  indicated 
by equation (AlO), t he  gross payload i s  defined here as the  i n i t i a l  mass 
exclusive of the  masses associated with providing the  major propulsive require- 
ments of t he  mission. 

is  the  i n i t i a l  mass i n  orb i t ,  ML 

M, 

To develop an expression f o r  t he  r a t i o  of ML t o  M, i n  terms of veloc- 
i t y  requirements and of other  parameters, t he  following relat ionships  and 
def in i t ions  are helpful .  F i r s t ,  the  well-known rocket formula 

i s  used t o  r e l a t e  propellant-mass requirements t o  veloci ty  increments 
any major stage.  For convenience, two r a t i o s  are defined, i n  general, as 

AVi at  

and 

If a series of terms 
payload m a s s  ML unloaded during the  mission, t he  masses of the  spacecraft  a t  
various points  i n  the  mission can be given as follows. 

k j  (Ckj < 1) i s  used t o  represent t he  f r ac t ions  of the  

(a) After launch from Earth o rb i t  and about t o  en ter  o r b i t  about Mars 
or to descend d i r e c t l y  t o  the  martian surface: 

- 
M 2  = Rl - k1EL 

where k, i s  the  f r ac t ion  of ML separated p r i o r  t o  in jec t ion  from t h e  h e l i -  
ocentr ic  t r ans fe r  t r a j ec to ry  in to  an o r b i t  about Mars or before entry in to  the 
martian atmosphere. I n  one type of rendezvous mode, klML might be the  Mars 
excursion vehicle which would proceed t o  a d i r ec t  descent t o  the  surface by 
means of atmospheric braking. Accumulated waste products might a l so  be 
included here. 

(b) When the  vehicle i s  ready t o  depart f o r  Earth: 

( Allb ) 

24 



a3 = RlR2  - (klR2 + k2)RL (Allc) 

where k2 i s  the f r ac t ion  of ML unloaded a t  Mars, e i the r  i n  a parking o r b i t  
o r  on the  surface. I n  t h e  rendezvous mode, k@L might include the  excursion 
vehicle and wastes accumulated during the  martian stay,  l e s s  the  mass of any 
s c i e n t i f i c  samples removed f r o m  the  planet  t o  be transported t o  Earth. I n  the  
d i r ec t  mode, k&L would include such i t e m s  as t h e  m a s s  of the  heat shield,  
parachutes, retropropulsion, landing gear, launching gear, and wastes, less 
m a s s  of samples. 

( c )  After launch from the  martian o r b i t  o r  surface and a f t e r  t he  mission 
module i s  discarded preparatory t o  d i r ec t  descent t o  surface of Earth: 

( Alld) 

where k3 i s  the f r ac t ion  of the gross payload unloaded during t h e  re turn  
t r i p  p r io r  t o  entry in to  the t e r r e s t r i a l  atmosphere. Here k3M~ would be the  
mission module containing the  l i fe-support  equipment, excess food, water, and 
oxygen; some auxi l ia ry  power un i t s ;  and other  items not required i n  the  d i r ec t  
descent t o  t he  surface of Earth by an atmosphere-entry capsule. 

(d)  Entry in to  t e r r e s t r i a l  atmosphere following propulsion deceleration 
and separation of retrorocket:  

( A l l f  ) 

With the  use of t he  relat ionships  of equations ( A l l )  i n  equation ( A l O ) ,  
t h e  expression f o r  the r a t i o  of the  mass of t he  gross payload t o  the  i n i t i a l  
m a s s  i n  o r b i t  about t h e  Earth RL i s  obtained as 

The general equation:for computing RL 
unloading of m a s s  between veloci ty  increments has the  form 

f o r  any number of veloci ty  s tages  w i t h  

25 



where n i s  the  number of veloci ty  stages and j i s  an. integer  between 1 
and (n  - 1). Any of t h e  k j  can be set t o  zero. Likewise, s e t t i ng  any veloc- 
i t y  increment equal t o  zero reduces the corresponding f ac to r  R t o  uni ty .  

A computer program w a s  devised t o  solve equation (A12) t o  f i n d  m a x i m  
f o r  a prescribed set of propulsion parameters, and f o r  given values of HL 

values of t o t a l  transit time T, s tay  t i m e  Ts, unloaded f r ac t ion  k j ,  and 
date of a r r i v a l  a t  Mars. These m a x i m  values are then p lo t t ed  as a function 
of t he  date of a r r i v a l  t o  determine the  grea tes t  value of the  individual m a x i -  
mums. The value of the i n e r t  f r ac t ion  a of any stage .is generally consid- 
ered t o  be a constant when propulsion by chemical rocket engines i s  assumed. 
I n  the case of nuclear propulsion, the  a 's  are calcuiated as functions of the  
veloci ty  increments. Reference 5 includes an equation f o r  the s t ruc tu ra l  f ac -  
t o r  y f o r  rocket engines i n  terms of t he  stage weight. The equation i s  of 
the form 

1 + a(1 - e -nv/c) 

y =  -nv/c) 1 + b ( 1  - e 

where a and b a re  r a t i o s  of various sums of weight r a t i o s  of  component p a r t s  
of the  rocket system. I n  terms of the  parameter 0 based on the weight of 
propellants as used here, t he  equation becomes 

The program provides f o r  substaging any o r  a l l  of the  main veloci ty  stages.  
f o r  Optimum staging techniques are assumed so  t h a t  the propulsive f ac to r  

n stages i s  calculated f r o m  
R i n  

I n  general, substaging is used i n  the  present study only when m a j o r  velocity 
increments a re  so  large tha t  negative R-values can be ant ic ipated.  
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APPEXDIX B 

NOTATION 

a 

C i  

e 

G 

L 

M 

M i  

ML 

M1 

r 

R 

R i  

T 

Tl. 

T2 

TS 

vE 

semimajor axis of conic orb i t s ,  a.u.  

e f f ec t ive  veloci ty  of e f f lux  from rocket engines of i t h  veloci ty  
stage, fps  

eccent r ic i ty  of conic o rb i t  

universal  g rav i ta t iona l  constant 

a l t i t u d e  of c i r cu la r  o r b i t  above surface of Earth and Mars, 
respect ively 

f r ac t ion  of  gross payload unloaded a f t e r  i t h  veloci ty  increment 

c e l e s t i a l  l a t i t ude  

mass 

mass a t  i t h  veloci ty  stage of  mission 

mass of gross payload, or i n i t i a l  mass l e s s  m a s s  required for 
propulsion 

i n i t i a l  m a s s  i n  Earth o r b i t  j u s t  p r io r  t o  departure f o r  Mars 

r a t i o  of  surface escape veloci ty  of  Mars t o  t h a t  of  Earth 

hel iocentr ic  distance 

per ihel ion distance 

equator ia l  radius of planet  
- n V i / C i  

i t h  propulsive fac tor ,  (1 + ai)e - a i  

t o t a l  t r a n s i t  time of mission 

t r i p  t i m e ,  Earth t o  Mars 

t r i p  t i m e ,  Mars t o  Earth 

s t ay  t i m e  a t  Mars 

atmo sphere -entry ve l o  c it y 



VR 

P 

A 

D 

f 

1 

2 

3 

4 

5 

@ >  0" 

veloci ty  of mission vehicle r e l a t i v e  t o  planet  at point of  
t r ans i t i on  from planetocentr ic  hyperbolic o r b i t  t o  hel iocentr ic  
transfer t r a j ec to ry  or vice versa 

difference between c e l e s t i a l  longitude of Mars a t  arrival and t h a t  
of Earth a t  departure 

per ihel ion constant of hel iocentr ic  t r a j ec to ry  from Earth t o  Mars 

required veloci ty  increment at i t h  ve loc i ty  stage of mission 

veloci ty  increment required f o r  plane change 

gravi ta t iona l  parameter, GM 

i n e r t  f rac t ion ,  or r a t i o  of m a s s  of i n e r t s  t o  mass of propel lants  
for t he  i t h  veloci ty  stage 

Subscripts 

a r r i v a l  

departure 

f i n a l  conditions at  Mars 

conditions or requirements a t  start of mission 

conditions or requirements a t  a r r i v a l  a t  Mars 

conditions or requirements a t  departure from Mars 

conditions or requirements at re turn  t o  Earth before entry 

conditons following en t ry  in to  t e r r e s t r i a l  atmosphere 

Earth and Mars, respect ively 

Supercr i p  t s 

normalized t o  i n i t i a l  mass i n  Earth o r b i t  

normalized t o  surface escape veloci ty  of Earth 
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W 
P Figure 1.- Orbital data for Mars and Earth, including oppositions of Mars from 190 t o  2000 AD. 
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(b)  Direct mode. 

Figure 13. - Continued. 
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